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ABSTRACT: With the advent of powerful analysis tools, intelligent
medical diagnostics for neurodegenerative disease (NDs) diagnosis are
coming close to becoming a reality. In this work, we describe a state-of-the-
art machine-learning system with multiclass diagnostic capabilities for the
diagnosis of NDs. Our framework for multiclass subject classification
comprises feature extraction using principal component analysis, feature
selection using Fisher discriminant ratio, and subject classification using
least-squares support vector machines. A multisite, multiscanner data set
containing 2540 patients clinically diagnosed as Alzheimer Disease (AD),
healthy controls (HC), Parkinson disease (PD), mild cognitive impairment
(MCI), and scans without evidence of dopaminergic deficit (SWEDD) was
obtained from Parkinson’s Progression Marker Initiative and Alzheimer’s
Disease Neuroimaging Initiative. Our work assumes significance since
studies have primarily focused on comparing only two subject classes at
once, i.e., as binary classes. To profile the diagnostic capabilities for real-
time clinical practice, we tested our framework for multiclass disease
diagnostic capabilities. The proposed method has been trained and tested
on this cohort (2540 subjects), the largest reported so far in the literature. For multiclass diagnosis, our method results in
highest reported classification accuracy of 87.89 ± 03.98% with a precision of 82.54 ± 08.85%. Also, we have obtained accuracy
of up to 100% for binary class classification of NDs. We believe that this study takes us one step closer to translating machine
learning into routine clinical settings as a decision support system for ND diagnosis.

1. INTRODUCTION

The World Alzheimer Report (2015) estimated that globally
there were 46.8 million people living with some form of
dementia. Alzheimer’s disease (AD) and Parkinson’s disease
(PD) are the two most prevalent progressive neurodegenerative
diseases (NDs).1 Diagnosing these diseases is challenging due to
(i) similarity in the pathological symptoms between different
forms of dementia especially at early stages, (ii) lack of disease-
specific early detection biomarkers, (iii) complete reliance on
the expertise of clinicians, and (iv) nonavailability of clinical
decision support system to assist in clinical decisions for NDs.
NDdiagnosis, especially in the early stages, remains a formidable
challenge and misdiagnosed patients lead poor disease manage-
ment outcomes. Clearly, there is an urgent need to develop
tests(s) and/or technique(s) that can assist in clinical decisions
to enable early and accurate diagnosis.
Several studies have reported potential biomarkers for

differential diagnosis of Alzheimer and Parkinson disease from
other similar disorders2,3 using group-level analysis. These

findings are interesting from a research perspective but find
limited use for individual-level routine clinical diagnosis. To
achieve individual-level disease diagnosis, development of
machine-learning-based classification algorithms is increasingly
becoming an active area of neuroscience research. Machine-
learning algorithms can typically handle high-dimensional
multivariate data sets such as those generated from magnetic
resonance imaging (MRI) scans. From these images, extraction
of key features to enhance the separability between the disease
classes under consideration is the key challenge for developing
reliable models for ND diagnosis. These features are then fed
into classification algorithms such as support vector machine4
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and least-squares support vector machine (LSSVM)5 for subject
classification.
Classically, predetermined medical diagnosis information is

used to sets of binary classes such as one for categorizing AD
from healthy control (HC) or AD from mild cognitive
impairment (MCI) or PD from scans without evidence of
dopaminergic deficit (SWEDD) subjects. In a real scenario,
establishing the disease diagnosis in a clinic is a multiclass
classification problem. However, it is difficult to extend
workflows designed for a simplified binary classification problem
to multiple classes.6 Thus, to move forward in the direction of
realizing a real-time clinical decision support system, we propose
here a novel framework to handle multiclass classification
problems for diagnosing AD and PD from other similar diseases.
In essence, for feature extraction, we have used principal

component analysis, and then the interclass discriminative

ability of the selected features was quantified using the Fisher

discriminant ratio. Features were then arranged in descending

order by their combined Fisher discriminant ratio scores and fed

into a multiclass LSSVM for classification. To the best of our

knowledge, this is the largest cohort of patients reported in the

literature so far. The proposed methodology has been

thoroughly tested on a data set of 2540 patients for AD, MCI,

PD, SWEDD, and HC patients obtained from multiple sites and

scanners. This was aimed at evaluating the generalizability of the

proposed methodology for application across different sites and

adaptability to scanners from different vendors.

Figure 1. Graphical summary of methodology developed in this study.
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2. MATERIALS AND METHODS

Steps described in this section were performed in accordance
with previously validated and published studies.5,7,8 Multicenter,
multiscanner MRIs from two clinical repositories, Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and Parkinson’s
ProgressionMarker Initiative (PPMI), were obtained for disease
classes, viz., AD, MCI, PD, SWEDD, and HC subjects. These
images were preprocessed to remove artifacts and coregistered
to a common ICBM template. Thereafter, all the images were
segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) images. These tissue-wise images of
disease classes were then used to calculate PCA scores for
training set of data. Combined Fischer discriminant ratio scores
were then calculated to obtain statistical significance of the PCA
features to improve class discriminating ability of the model.
PCA scores were then arranged as per the decreasing order of
combined FDR scores. This formed the preliminary multi-
classification model. Decisions on optimal number of features
were made by varying the number of features from 50 to 2250
and then presenting them to the LSSVMmodel; a 10-fold cross-
validation and statistical assessment of the results was thenmade
by calculating the accuracy, precision, sensitivity, specificity, and
Mathews correlation coefficient (MCC). The model with
highest accuracy and MCC was selected for binary classification
whereas accuracy and precision were used for selecting model
for multiclass classification. Detailed information regarding the
subjects is provided in the Supporting Information. Please refer
to Figure 1 for a graphical summary of methodology developed
in this study.
2.1. Data Acquisition. A total of 2540 T1-weighted MRIs

for AD, HC, MCI, PD, and SWEDD subjects were obtained
from the Alzheimer’s disease neuroimaging initiative and the
Parkinson progression marker initiative. The unique features of
the data set used in this study are as follows: (1) acquisition of
MRIs frommultiple sites and scanners and (2)MRIs obtained at
both 1.5 and 3T. Table 1 presents demographic and clinical
details of the subjects. Several motor and nonmotor character-
istics were assessed using various tests.
2.2. Image Preprocessing. To account for the differences

in the size of the brain among individuals,9 brain MRIs were
coregistered with the brain template from the International
Consortium for Brain Mapping.10 Thereafter, every MRI was
smoothed and segmented to produce white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) brain images using

Voxel-Based Morphometry toolbox v8.011 for Statistical Para-
metric Mapping v8.0.12

2.3. Feature Extraction. The resolution of MRIs obtained
after preprocessing was 121 × 145 × 121 voxels. We were
mindful of the fact that there exists similarity in some of the brain
areas between all subjects, even between diseased and healthy
control subjects. Thus, while some of the features, i.e., brain
areas, might be more important to distinguish between the
subjects, others might be redundant. Removal of these
redundant features has 2-fold benefits. First, it speeds up the
process of learning by reducing the computational load. Second,
the removal of redundant features is believed to improve the
accuracy of classification.13

We have used principal component analysis for dimension-
ality reduction. In this, an orthogonal transformation is applied
to choose a new coordinate system such that the principal
components are arranged by decreasing order of the variance in
the data captured by them. Thus, the later components can be
eliminated leading to a reduction in data dimensionality with
minimal loss of information. For calculation of principal
components, starting from the calculation of covariance matrix
as shown in eq 1, we determine its eigenvalues and eigenvectors.
The greater the eigenvalue of an eigenvector, the higher the
variance captured from the data set by that principal component.

= ×C X XT (1)

where X is the mean centered and variance normalized data
matrix and C is the calculated covariance matrix.

2.4. Feature Selection. To enhance the sensitivity of
separation between the subject classes, especially for multiclass
classification, we have modified the use of Fisher discriminant
ratio to suit our needs for multiclass classification (see eq 2). To
determine the features with higher discriminative ability, Fisher
discriminant ratio scores for all the combination of classes were
summed to obtain a combined score. Thereafter, the combined
score values were arranged in the descending order such that the
feature with the highest value has the highest discriminative
ability to differentiate between subject classes under consid-
eration.

∑ ∑
μ μ

σ σ
=

−

+≠

CFDR
( )

( )i

M

j i

M
i j

i j

2

2 2
(2)

where M refers to the number of classes, (μi, μj) are the means,
and (σi

2, σj
2) are the variances of the class under consideration. In

Table 1. Clinical and Demographic Details of Subjects

subject class

variables AD HC LMCI MCI PD SWEDD

M/F 144/146 410/350 357/83 284/196 339/171 38/22
age 75.92 ± 07.88 72.51 ± 11.32 75.97 ± 07.39 75.76 ± 08.02 61.78 ± 09.64 60.83 ± 10.97
education 14.27 ± 02.97 16.01 ± 02.90 15.95 ± 02.95 15.86 ± 02.57 16.00 ± 00.00 14.82 ± 03.73
MoCA 27.63 ± 01.52 26.58 ± 02.40 26.37 ± 02.40
GDS 06.32 ± 01.21 05.36 ± 01.43 05.09 ± 02.37 06.15 ± 01.60 05.42 ± 01.18 05.50 ± 01.48
Bjlo 25.72 ± 03.49 25.07 ± 03.84 25.21 ± 04.14
MDS-UPDRS 03.94 ± 03.54 26.62 ± 07.35 21.37 ± 10.58
H&Y 00.04 ± 00.20 01.73 ± 00.43 01.32 ± 00.63
MMSE 22.00 ± 02.90 28.50 ± 01.00 25.76 ± 02.99 25.31 ± 02.98
MHIS 00.70 ± 00.69 00.58 ± 00.71 00.59 ± 00.71 00.65 ± 00.77

aData are presented as mean ± standard deviation. M/F: male/female; GDS: geriatric depression scale; MMSE: mini mental state examination;
MoCA: Montreal cognitive assessment; Bjol: Benton judgment of line orientation; MDS-UPDRS: Movement Disorder Society-unified Parkinson’s
disease rating scale; H&Y: Hoehn and Yahr scale; MHIS: modified Hachinski Ischemia score.
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this work,M = 2 for binary classification andM = 6 for multiclass
classification.
2.5. Feature Classification. Least-square support vector

machine (LSSVM) is a reformulation of support vector machine
that performs computationally faster as compared to the latter. It
calculates the separation boundary between classes by
calculating a solution to a set of linear equations, unlike solution
to a quadratic problem. Thus, a multiclass classification problem
is computationally less intensive when classifying large data sets.
Mathematical formulation and details regarding LSSVM can be
found elsewhere.14

We have used RBF kernel function and used a multidimen-
sional unconstrained nonlinear optimization to tune the LSSVM
parameters.

3. RESULTS AND DISCUSSION

3.1. Choice of Optimal Features. Classification perform-
ance is critically reliant on the number of features presented to
the classifier. To find the optimal choice of features that would
provide the best overall performance, the number of features
were varied from 50 to the maximum number of features
available in the model obtained from the principal component
analysis. At each run, features were presented to LSSVM, and the
performance of the classifier was evaluated (see Figure 2). For
binary classification, we found 300 principal components to be
optimal for all the disease classes and types of brain tissue. For
multiclass classification, we found 1850, 1800, and 1750
principal components to be optimal for GM, WM, and CSF
images, respectively.

Figure 2. Average classification accuracy obtained upon varying number of principal components presented to LS-SVM for classification. “•” indicates
the chosen number of features for binary and multiclass comparisons.
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3.2. Performance Evaluation. As mentioned earlier, we

performed 10-fold cross-validation to assess the generalizability

of the proposed methodology. Several other measures were

calculated to assess the predictive performance. For multiclass

classification, we calculated overall accuracy and precision. For

binary classes, we calculated accuracy, sensitivity, specificity, and

Matthews correlation coefficient (MCC) using eqs 3−6,
respectively.

= +
+ + +

Accuracy
(TP TN)

(TP FP FN TN) (3)

=
+

Sensitivity
(TP)

(TP FN) (4)

=
+

Specificity
(TN)

(TN FP) (5)

Table 2. Accuracy Rates Obtained for Binary and Multiclass Comparison between Subjects

comparison accuracy MCC sensitivity specificity brain matter

AD vs HC 99.81 ± 00.43 1.00 ± 0.01 99.31 ± 01.54 100.00 ± 00.00 GM
AD vs LMCI 99.73 ± 00.61 0.99 ± 0.01 99.31 ± 01.54 100.00 ± 00.00 CSF
AD vs MCI 98.70 ± 00.92 0.97 ± 0.02 96.21 ± 03.12 100.00 ± 00.00 GM
LMCI vs HC 99.50 ± 00.46 0.99 ± 0.01 99.48 ± 00.71 99.46 ± 01.21 GM
LMCI vs MCI 99.35 ± 00.60 0.99 ± 0.01 99.50 ± 01.12 99.16 ± 01.15 WM
MCI vs HC 100.00 ± 00.00 1.00 ± 0.00 100.00 ± 00.00 100.00 ± 00.00 GM
PD vs HC 90.87 ± 02.46 0.82 ± 0.04 96.99 ± 01.13 84.11 ± 04.58 GM
PD vs SWEDD 85.61 ± 05.02 0.42 ± 0.14 95.76 ± 01.52 39.16 ± 15.96 CSF
SWEDD vs HC 92.20 ± 03.72 0.63 ± 0.13 99.43 ± 00.78 47.85 ± 14.81 WM

comparison accuracy precision brain matter

AD vs LMCI vs MCI vs PD vs SWEDD vs HC
87.89 ± 03.98 82.54 ± 08.85 GM
65.39 ± 17.47 62.89 ± 14.85 WM
78.97 ± 12.87 75.31 ± 11.54 CSF

aData are presented as mean ± standard deviation. Here we present the best results obtained for each binary comparison. Please refer to Table S1
for brain matter wise accuracy results for all the comparisons.

Table 3. Studies Investigating Binary and Multiclass Comparison for Diagnosing NDsa

comparison N accuracy sensitivity specificity ref

AD vs HC

75/75 92 17
23/23 94 96 92 18
20/25 100 100 100 21

290/760 99.81 ± 00.43 99.31 ± 01.54 100.00 ± 00.00 this study
53/52 95 19

AD vs MCI
21/15 87 85 80 15

290/480 98.70 ± 00.92 96.21 ± 03.12 100.00 ± 00.00 this study

MCI vs HC

15/20 95 93 90 15
79/204 71.09 51.96 78.4 16
23/25 83 83 84 18
24/18 97.62 96 100 27

480/760 100.00 ± 00.00 100.00 ± 00.00 100.00 ± 00.00 this study
114/53 88 19

PD vs HC
510/760 90.87 ± 02.46 96.99 ± 01.13 84.11 ± 04.58 this study
28/28 85.8 86 86 4
518/245 93.25 ± 0.46 97.12 85.03 5

PD vs SWEDD
510/60 85.61 ± 05.02 95.76 ± 01.52 39.16 ± 15.96 this study
518/68 99.86 ± 0.10 100 98.81 5

SWEDD vs HC
50/760 92.20 ± 03.72 99.43 ± 00.78 47.85 ± 14.81 this study
68/245 100.00 ± 0.00 100 100 5

comparison N accuracy precision ref

AD vs MCI vs HC 180/374/204 46.30 ± 4.24 22
AD vs MCI vs HC 51/99/52 68.31 ± 1.23 20
AD vs FTD vs VaD vs DLB vs HC 223/92/24/47/118 51.6 24
AD vs FTD vs VaD vs DLB vs SMC 219/92/24/47/118 75.2 25
AD vs FTD vs VaD vs DLB vs SMC 219/92/24/47/118 82.3 26
AD vs LMCI vs MCI vs PD vs SWEDD vs HC 290/440/480/510/60/760 87.89 ± 03.98 82.54 ± 08.85 this study

aData are presented as mean ± standard deviation. N: number; AD: Alzheimer Disease; DLB: dementia with Lewy bodies; FTLD: frontotemporal
lobe degeneration; HC: healthy control subjects; LMCI: late mild cognitive impairment; MCI: mild cognitive impairment; PD: Parkinson disease;
SMC: subjective memory complaints; SWEDD: scans without evidence of dopaminergic deficit; VaD: vascular dementia.
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MCC was calculated to evaluate the quality of binary
classification and can vary from 0 to 1. An MCC value closer
to 1 represents a better classifier (See eq 6).

=
× − ×

+ × + × + × +

MCC
(TP TN FP FN)

(TP FP) (TP FN) (TN FP) (TN FN)
(6)

where considering one class as positives and the other as
negatives, TP refers to true positives, TN refers to true negatives,
FP refers to false positives, and FN refers to false negatives.
3.3. Binary versus Multiclass Classification. We have

made a comparison between a total of 6 subject classes, viz., AD,
HC,MCI, lateMCI, PD, and SWEDD.On considering the three
types of brain tissue, a total of 45 binary classes were formed (see
Table 2). Similarly, three multiclass classifier models were also
built. For binary comparison between subject classes, on
considering the highest accuracy achieved using either of the
brain tissue, our method achieved an average classification
accuracy greater than 97% with MCC of 0.92. For 12/15 subject
class comparisons, classification accuracy of over 99% was
achieved. For multiclass classification, we found gray matter
tissue to be the most suitable, achieving an overall accuracy
greater than 87% with a precision of 83% (see Table 2).

4. DISCUSSION

In the past, mainly two types of approaches have been explored,
viz., (i) whole brain analysis and (ii) analysis on automated or
manually selected regions of interest (ROIs).
Automated or manual selection of ROIs is mostly dependent

on the type of disease under consideration based on insights
from the disease pathology. Since understanding the pathology
of these diseases and their related biomarkers is still an active
area of research, even though the selection of ROIs reduces the
data dimensionality, the designed model for disease diagnosis is
inherently biased. Chen et al. divided the brain into 116 ROIs
and, using the pairwise ROIs Pearson product moment
correlation coefficients, obtained classification accuracy of 87
and 95% for distinguishing AD vs MCI and MCI vs HC,
respectively.15 Cui et al. used a combination approach where
fractional anisotropy and large deformation diffeomorphic
metric mapping to extract subcortical volumetric features that
were fed to a support vector machine that was able to distinguish
amnestic MCI and HC patients with an accuracy of 90%.16

Duchesne et al. obtained features only from the medial temporal
lobe while distinguishing equal numbers of AD and HC subjects
with an accuracy of 92%.17 Similarly, Gerardin et al. obtained
only features from the hippocampi using spherical harmonics
coefficients and upon using the support vector machine
obtained classification accuracies of 94 and 83% to distinguish
AD vs HC and MCI vs HC, respectively (see Table 3).18

However, whole brain analysis is an unbiased approach that
takes into account all the brain regions. The dimensionality of
data and computational complexity becomes an issue. To
mitigate this, feature selection criteria are used to reduce data
dimensionality based on statistical inferences from the data.
Many machine-learning approaches such as Gaussian mixture

model,19 linear discriminant analysis,20 Pearson correlation,21

principal component analysis,4 and self-organizing maps5 have
been employed for feature extraction. In this study, we have
performed a whole-brain analysis using principal component

analysis and used a reformulated version of Fisher discriminant
ratio for multiclass classification using LSSVM.
Another impending issue is that most of the studies have been

aimed at (1) differential diagnosis of NDs by comparing binary
sets of subject classes and (2) understanding either AD or PD
and their related counterparts. Recently, Zhu et al. made use of
linear discriminant analysis and locality preserving projection for
multiclass classification in AD diagnosis and achieved an
accuracy of 68.31 ± 1.23 using MRI.20 Similarly, Liu et al.
reported classification accuracy of only 64.07 ± 4.76% for the
multiclass diagnosis of AD using multimodal imaging.22

Koikkalainen et al. used control subjects and subjects from
four common types of dementia: (1) Alzheimer’s disease, (2)
frontotemporal dementia, (3) vascular dementia, and (4)
dementia with Lewy bodies. They performed multiclass
classification analysis using Disease State Index (DSI)23 and
achieved a classification accuracy of 51.6%.24 More recently,
Tong et al. using random under sampling boosting (RUSBoost)
achieved multiclass classification accuracy of 75.2% using
imaging and nonimaging features derived from Alzheimer’s
disease, frontotemporal lobe degeneration, dementia with Lewy
bodies and vascular dementia, and patients with subjective
memory complaints.25 Tolonen et. al used a similar cohort of
subjects and developed a tool called PredictND for multiclass
neurodegenerative disease diagnosis using the similar patient
cohort. Using random under sampling boosting algorithm they
achieved multiclass classification accuracy of 82.3%.26 Table 3
compares the results obtained using our study with that of the
existing methods.
Through this work, we have tried to address several pertinent

issues. First, MRIs are routinely performed to estimate the
cognitive impairment. They are noninvasive, widely available,
and inexpensive as compared to its counterparts such as PET,
DTI, and others. Using MRIs, we have demonstrated the ability
to assist in differential diagnosis with high precision and
accuracy. This makes it an ideal choice to be adopted in a clinical
setting. Second, most of the studies have been conducted using
in-house patients. Since data sets for these studies are rarely
made available in the public domain, it difficult to reproduce
their results. To overcome this limitation, data sets from two
public repositories, viz., the Alzheimer’s Disease Neuroimaging
Initiative and the Parkinson Progression Marker Initiative, have
been used in this study. Information about the subjects’ IDs and
other related details have been provided in the Supporting
Information. Third, we have performed differential diagnosis for
two of the most prevalent disease classes, AD and PD, from their
similar counterparts, MCI and SWEDDs. To the best of our
knowledge, ours is the first study investigating machine-
learning-based diagnosis for the two most common NDs, AD
and PD, at once. Fourth, we purposely included images from
multicenter, multivendor and those with variable field strengths.
With this, we aimed to assess the generalizability of the proposed
methodology and evaluate the potential of the developed
algorithm as clinical decision support for routine diagnosis. Last,
most of the studies have been focused on comparing only two
subject classes at once, i.e., in terms of binary classes. This is
useful to highlight differences between the classes under
consideration. However, the real challenge is to be able to
predict a subject class by treating it as a multiclass problem with
humanlike diagnostic capabilities. Only a handful of studies have
recently addressed this issue. Upon using our methodology, we
have obtained accuracy of 87.89 ± 03.98% with a precision of
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82.54 ± 08.85%. This is the highest reported accuracy for
multiclass classification of NDs.

5. CONCLUSION
In summary, MRIs, routinely performed for assessment of
cognitive impairment of subjects could be processed using this
method to obtain probable subject classification. The results
obtained using the proposed methodology along with doctor
consultation promises a new paradigm inmedical technology for
ND diagnosis (see Figure 3). The ease of applicability,

adaptability to images from multiple scanners, and the high
performance of the proposed methodology on the largest cohort
of patients reported in the literature establishes the it as an ideal
candidate for its transferability into a first-line neuroimaging
diagnostic tool for NDs in a clinical setting.
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